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We show that the Kullback-Leibler distance is a good measure of the statistical uncertainty of correlation
matrices estimated by using a finite set of data. For correlation matrices of multivariate Gaussian variables we
analytically determine the expected values of the Kullback-Leibler distance of a sample correlation matrix
from a reference model and we show that the expected values are known also when the specific model is
unknown. We propose to make use of the Kullback-Leibler distance to estimate the information extracted from
a correlation matrix by correlation filtering procedures. We also show how to use this distance to measure the
stability of filtering procedures with respect to statistical uncertainty. We explain the effectiveness of our
method by comparing four filtering procedures, two of them being based on spectral analysis and the other two
on hierarchical clustering. We compare these techniques as applied both to simulations of factor models and
empirical data. We investigate the ability of these filtering procedures in recovering the correlation matrix of
models from simulations. We discuss such ability in terms of both the heterogeneity of model parameters and
the length of data series. We also show that the two spectral techniques are typically more informative about
the sample correlation matrix than techniques based on hierarchical clustering, whereas the latter are more
stable with respect to statistical uncertainty.
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I. INTRODUCTION

The empirical analysis of interactions between the ele-
ments of a complex system is fundamental to understand
both the collective structures and the basic rules inducing the
emergent behavior of complex systems. The monitoring of
several complex systems nowadays produces large sets of
multivariate data. Examples of these sets of data are present
in physical �1,2�, biological �3–5�, and economic systems
�6–8� and their analysis is an important and challenging task
in the investigation of complex systems. Many efforts have
been done in the analysis of multivariate data series and most
of them focus on the study of pair cross correlations. The
analysis of cross correlation is precious in order to elicit the
emergence of collective structures from multivariate data.
Classical spectral methods such as the principal component
analysis �9�, recent related techniques based on concepts of
random matrix theory �6,7�, hierarchical clustering �10�, fac-
tor analysis �9�, and graph theory �11� are fruitful approaches
to the analysis of correlations among elements of complex
systems elicited by multivariate data.

Cross correlations estimated from real data are unavoid-
ably affected by the statistical uncertainty due to the finite
size of the sample. In most cases, the length of data is un-
avoidably limited whereas in other cases the length of data
needs to be limited to avoid that sizable nonstationary effects
might introduce large errors in the estimation of correlations.
Cross correlations might also be affected by noise due to
measurement errors and to the interaction of the system with
the environment. In order to at least partially overcome these
problems, it is advisable to select statistically reliable infor-
mation from the correlation matrix. We refer to the selection
of the most statistically reliable part of the correlation matrix
by saying filtering of the correlation matrix.

Several techniques have been proposed in the literature in
order to filter out information from the correlation matrix and
therefore it is important to have at hand a method for com-
paring the performance of such different techniques in a
quantitative way.

In this paper, we propose to measure the performance of
filtering procedures by using the Kullback-Leibler distance
�12� which is a measure of distance between probability dis-
tributions and it is widely used in information theory �see,
for instance, Ref. �13��. Specifically, for multivariate Gauss-
ian variables, we explicitly compute the analytical form of
the Kullback-Leibler distance and we show how it depends
on the correlation matrices of the considered sets of data or
of filtered versions of them. Under the same assumptions we
analytically obtain the expected values of the Kullback-
Leibler distance between the correlation matrix of a multi-
variate model and a sample correlation matrix obtained with
the Pearson estimator from a finite set of data. One of our
key results is that these expected values are model indepen-
dent. This result shows that the Kullback-Leibler distance is
very good in quantifying the amount of information present
in a sample correlation matrix with respect to a hypothetical
reference model also in the cases when the specific nature of
the model is unknown. We are also able to compute the ex-
pected value of the Kullback-Leibler distance between two
distinct samples of the correlation matrix obtained from the
same random source. This last quantity is very useful in
quantifying the stability associated with any sample estima-
tion and specifically with the stability of the correlation ma-
trices obtained from filtering procedures.

We show the effectiveness of the use of the Kullback-
Leibler distance in comparing data and models and in assess-
ing the stability of the estimation of the sample correlation
matrix by investigating four different filtering methods. Two
of them are based on spectral analysis, while the other two
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are generated by hierarchical clustering procedures. A good
filtered correlation matrix is supposed to be informative
about the sample correlation matrix and, at the same time, to
be statistically more robust than the sample matrix itself with
respect to statistical uncertainty. In our investigation we con-
sider in a quantitative way both these aspects.

The paper is organized as follows. In Sec. II we present
the analytical results of the expected values of the Kullback-
Leibler distance and we show how the Kullback-Leibler dis-
tance can be used as an estimator of the goodness of filtering
procedures. In Sec. III we describe the four filtering proce-
dures that we quantitatively compare in Sec. IV, both by
investigating simulations and real data. Finally, in Sec. V we
draw our conclusions.

II. KULLBACK-LEIBLER DISTANCE

The Kullback-Leibler distance �see, for instance, Ref.
�13�� or mutual entropy is a measure of the distance between
two probability densities, say p and q, which is defined as

K�p,q� = Ep�ln� p

q
�� , �1�

where Ep�·� indicates the expectation value with respect to
the probability density p. The Kullback-Leibler distance is
asymmetric. In Eq. �1� the expectation value is evaluated
according to the distribution p. Since the property of sym-
metry is sometimes important, a symmetrization of the
Kullback-Leibler distance, called Jefferys-Kullback-Leibler
J-divergence has been introduced �12,14�. In other cases the
asymmetry could also be a useful feature of a distance mea-
sure. This is the case when objects of different nature �or
simply with different statistical meaning� are compared. The
Kullback-Leibler distance is widely used in information
theory. The mutual information between two random vari-
ables X and Y is defined as K�p�X ,Y� , p�X�p�Y�� �see, for
instance, Ref. �13��, where p�X ,Y� is the joint probability
density function of X and Y, whereas p�X� and p�Y� are the
corresponding marginal probabilities. In this case, the asym-
metry is important because the mutual information is mea-
suring the error one commits in considering two random
variables as independent variables. Accordingly, this measure
is performed by evaluating the distance between the correct
joint probability p�X ,Y� and the product p�X�p�Y�, averaging
the result over p�X ,Y�.

Here we consider the Kullback-Leibler distance between
multivariate Gaussian random variables. We consider vari-
ables with zero mean and unit variance without loss of gen-
erality because we are interested in the comparison of the
correlation matrices of the two sets of variables. In this case,
the Gaussian multivariate distribution associated with the
random vector X is completely defined by the correlation
matrix � of the system. In the following we indicate the
probability density function with P�� ,X�. Given two differ-
ent probability density functions P��1 ,X� and P��2 ,X�, we
have

K�P��1,X�,P��2,X�� = EP��1,X��ln�P��1,X�
P��2,X���

=	 P��1,X�ln�P��1,X�
P��2,X��dX . �2�

By performing the integral in Eq. �2� one obtains the follow-
ing:

K�P��1,X�,P��2,X�� =
1

2
�ln� 
�2



�1
� + tr��2
−1�1� − n� ,

�3�

where n is the dimension of the space spanned by the X
variable and 
�
 indicates the determinant of �. In Appendix
A we show how to derive the last equation from Eq. �2�.
Equation �3� shows that the Kullback-Leibler distance is an
explicit function of only the correlation matrices �1 and �2
for multivariate normal distributions. Therefore, from now
on we indicate K�P��1 ,X� , P��2 ,X�� simply with K��1 ,�2�.
It is worth noting that the Kullback-Leibler distance takes
naturally into account the statistical nature of correlation ma-
trices. Indeed K��1 ,�2� is well defined only provided that
the matrices �1 and �2 are positive definite. This property is
not common to other measures of distance between matrices
which are based essentially on the isomorphism between the
matrix space and a vector space, e.g., the Frobenius distance
�see below�. However this property can also be a limitation.
The Kullback-Leibler distance cannot be used to quantify the
distance between semipositive correlation matrices that are
observed when the length T of the data series is smaller than
the number n of elements of the system. The Kullback-
Leibler distance is also related to the maximum likelihood
factor analysis �MLFA� �9�. In fact, the logarithm-likelihood
function to be maximized in order to describe a system of n
elements with sample correlation matrix C estimated from
the data series of length T, with a k-factor model with cor-
relation matrix �k, is given by

L�C,�k� = − TK�C,�k� − 1
2T�ln�
2�C
� − n� . �4�

In the MLFA, L�C ,�k� is maximized with respect to �k.
This maximization is therefore equivalent to minimize the
Kullback-Leibler distance K�C ,�k� with respect to �k, be-
cause the other terms in Eq. �4� are independent of �k. It
should be noticed that in Eq. �4� the empirical correlation
matrix C is the one estimated from the investigated data and
one calibrates the correlation matrix �k of the model by
maximizing L�C ,�k�. This fact explains why the log-
likelihood depends on K�C ,�k� instead of K��k ,C�.

In this paper we apply the Kullback-Leibler distance to
sample correlation matrices obtained with the Pearson esti-
mator. Since different realizations of the process give rise to
different samples, a Kullback-Leibler distance having one or
two sample correlation matrices as arguments is a function of
one or two random matrices. It is known that sample cova-
riance matrices of finite variance variables belong to the en-
semble of Wishart random matrices, and many statistical
properties of Wishart matrices are known �9�. It is therefore
useful to investigate the statistical properties of the
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Kullback-Leibler distance involving sample correlation ma-
trices of multivariate Gaussian random variables. These
properties will be useful in the next section as absolute terms
of comparison of filtering procedures of the correlation
matrix.

Let us consider a multinormally distributed random vector
X of dimension n with correlation matrix �. Let C1 and C2
be two sample correlation matrices obtained from two inde-
pendent realizations of the system both of length T. By mak-
ing use of the theory of Wishart matrices �9� we obtain that

E�K��,C1�� =
1

2�n ln� 2

T
� + �

p=T−n+1

T ����p/2�
��p/2� �

+
n�n + 1�
T − n − 1� , �5�

E�K�C1,��� =
1

2�n ln�T

2
� − �

p=T−n+1

T ����p/2�
��p/2� �� , �6�

and

E�K�C1,C2�� =
1

2

n�n + 1�
T − n − 1

, �7�

where ��x� is the usual � function and ���x� is the derivative
of ��x�. In Appendix B we show how to derive these expec-
tation values. Finally, it is possible to give the asymptotic
expectation value of the standard deviation of K�C1 ,�� by
using the Bartlett statistics �15�. Specifically if T�1, n�1,
and Q=T /n�1 we infer that the standard deviation of
K�C1 ,�� is �K�1/ �2Q�.

It is important to observe that all of the expectation values
given in Eqs. �5�–�7� are independent of �, i.e., they are
independent of the specific model. This fact implies that �i�
the Kullback-Leibler distance is a good measure of the sta-
tistical uncertainty of the correlation matrix which is due to
the finite length of the data series and �ii� the expected value
of the Kullback-Leibler distance is known also when the un-
derlying model hypothesized to describe the system is un-
known. This fact has important consequences. Suppose one
knows that the observed data are well approximated by a
multivariate Gaussian distribution and that one measures a
sample correlation matrix C. In order to remove some un-
avoidably present statistical uncertainty, the experimenter ap-
plies a filtering procedure to the data obtaining the filtered
correlation matrix Cfilt. If the filtering technique is able to
recover the model correlation matrix, i.e., Cfilt=�, the
Kullback-Leibler distance K�C ,Cfilt� must be equal on aver-
age to the value given in Eq. �6�. This expected value is
independent on the �unknown� model correlation matrix �.
Therefore, large deviations from this expectation value indi-
cate that the filtered matrix is not consistent with the true
matrix of the system. If K�C ,Cfilt� is significantly smaller �in
terms of the error �K�1/ �2Q�� than the expectation value of
Eq. �6�, it means that the filtering procedure has at most
partially removed the statistical uncertainty, i.e., the filtered
matrix is keeping some of the statistical uncertainty due to
the finite length T. If, on the other hand, K�C ,Cfilt� is sig-

nificantly larger than the value of Eq. �6�, it means that the
filtered matrix is either filtering too much information or
distorting the signal. The distance between K�C ,Cfilt� and
the expected value of Eq. �6� is a measure of the goodness of
the filtering procedure in keeping the maximal amount of
information which can be present in sample correlation ma-
trices estimated with a finite number of records.

A second aspect concerns the stability of the filtered cor-
relation matrix obtained from a sample matrix. Let us sup-
pose to apply a certain filtering procedure to the correlation
matrices C1 and C2 of two independent realizations of the
system, obtaining two filtered correlation matrices C1

filt and
C2

filt. If it turns out that K�C1
filt ,C2

filt� is larger than the ex-
pected value of K�C1 ,C2� described by Eq. �7�, one can con-
clude that the filtering procedure produces correlation matri-
ces less reproducible than the sample correlation matrices
and therefore the procedure is not suitable for the purpose of
filtering robust information from the empirical correlation
matrices C1 and C2.

In summary we have shown that the Kullback-Leibler dis-
tance is very good for comparing correlation matrices be-
cause �i� it is an asymmetric distance and therefore it can
distinguish between quantities observed in real systems and
used to model the empirical observations, e.g., the sample
correlation matrix and the filtered correlation matrix, respec-
tively; �ii� the expectation values of the Kullback-Leibler
distance given in Eqs. �5�–�7� are model independent, indi-
cating that this distance is a good estimator of the statistical
uncertainty due to the finite size of the empirical sample; �iii�
the Kullback-Leibler distance is intimately related to the log-
likelihood function used in MLFA, and �iv� it is deeply re-
lated with concepts of information theory, such as the mutual
information. These properties are not observed in other wide-
spread distances between matrices. For example, we shall
show that we do not find these properties in the Frobenius
distance, which is a standard measure of the distance be-
tween matrices.

The Frobenius distance between two n�n matrices �1
and �2, of real elements sij

1 and sij
2 , respectively, is defined as

F��1,�2� =�
i=1

n

�
j=1

n

�sij
1 − sij

2 �2 = tr���1 − �2���1 − �2�T� .

�8�

We note that the Frobenius distance is symmetric. Therefore,
it cannot assign a different role to a model correlation matrix
� with respect to some sample C of �. We also observe that
this distance is well defined independently of the nature of
matrices �1 and �2, i.e., these matrices can also be nonposi-
tive definite. Finally and more important, we want to show,
for a simple system of two variables, that the expectation
value of the Frobenius distance between a true correlation
matrix and its Pearson estimator is model dependent, i.e., this
expectation value depends on the true correlation matrix.

Let us consider a bivariate normal distribution N�0,��,
where � is a 2�2 correlation matrix and 0 is the null vector
of dimension 2. We indicate the only entry of � different
from 1 with �. The sample correlation matrix C is defined as
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C = �1 �̂

�̂ 1
� , �9�

where �̂ is the Pearson correlation coefficient estimated from
a realization of N�0,�� of length T. It results that

F��,C� = 2
� − �̂
 . �10�

The distribution of �̂ is approximately Gaussian for large
values of T. The mean value of �̂ is � and the standard
deviation is �1−�2� /T �16�. Accordingly, the expectation
value of the Frobenius distance between the two matrices is

E�F��,C�� =
2

�T
�1 − �2� . �11�

This result shows that the Frobenius distance is model de-
pendent and, therefore, it is not a good estimator of the sta-
tistical uncertainty of the correlation matrix due to the finite
length of the data series.

III. FILTERING PROCEDURES

In this section we describe four procedures that can be
used to filter correlation matrices. Two procedures are based
on spectral techniques, i.e., they are based on the comparison
between the spectrum of the sample correlation matrix and
the spectrum expected for a random matrix. These proce-
dures are described in some detail in Sec. III A. The other
two techniques that we consider here are hierarchical clus-
tering procedures. Specifically, we obtain two different fil-
tered matrices by applying the single linkage cluster analysis
�SLCA� and the average linkage cluster analysis �ALCA� to
the sample correlation matrix of the system. The ALCA and
SLCA are standard procedures of hierarchical clustering and
we describe how these techniques generate filtered correla-
tion matrices in Sec. III B.

A. Spectral methods

Random matrix theory �17� was originally developed in
nuclear physics and then applied to many different fields. Let
us consider n independent random variables with finite vari-
ance and T records each. The sample correlation matrix of
the system in the limit T→� is simply the identity matrix.
When T is finite, the correlation matrix will in general be
different from the identity matrix. Random matrix theory al-
lows us to prove that in the limit T ,n→�, with a fixed ratio
Q=T /n�1, the eigenvalues of the sample correlation matrix
C cannot be larger than

	max = �2�1 + 1/Q + 21/Q� , �12�

where �2=1 for correlation matrices. The idea underlying
both the spectral filtering procedures considered here is that
of reducing the impact of eigenvalues smaller than 	max on
the structure of an empirical correlation matrix, in order to
remove the effects of those eigenvalues that are consistent
with the null hypothesis of uncorrelated random variables. In
some practical cases, such as, for example, in finance, one
finds that the largest eigenvalue 	1 of the empirical correla-

tion matrix is definitely inconsistent with random matrix
theory. In these cases, the null hypothesis is modified so that
correlations can be explained in terms of a one factor model.
Accordingly, when 	1�	max we set �2=1−	1 /n in Eq. �12�
�6�. The first filtering procedure we consider here has been
used by Rosenow et al. in Ref. �18�. The technique consists
in replacing the eigenvalues smaller than 	max in the diagonal
matrix D of eigenvalues of C with zeros, thus obtaining a
new diagonal matrix DS

�. One can therefore compute the ma-
trix QS=VTDS

�V of elements qij
S , where V is the matrix of

eigenvectors of C. Finally, the filtered correlation matrix CS

of elements cij
S is obtained by forcing the diagonal elements

of QS to 1, i.e., cij
S =
ij +qij

S �1−
ij�, where 
ij is the standard
Kronecker symbol. The second procedure we apply has been
considered by Potters et al. in Ref. �19�. Here, eigenvalues
smaller than 	max in D are replaced with their average value
in the diagonal matrix DB

� . As in the previous case, one ro-
tates the matrix DB

� getting the matrix QB=VTDB
�V of ele-

ments qij
B, where again V is the matrix of eigenvectors of C.

Finally, the filtered correlation matrix CB is the matrix of
elements cij

B =qij
B /qii

Bqjj
B . Both the matrices CS and CB satisfy

the properties of a correlation matrix, i.e., �i� they are posi-
tive definite; �ii� their diagonal elements are equal to 1, and
�iii� their off-diagonal elements are in absolute value smaller
or equal to 1.

B. Hierarchical clustering procedures

Another approach used to filter the information associated
with the correlation matrix is given by hierarchical clustering
analysis �10�. Let us consider a set of n objects and suppose
that a similarity measure, e.g., the correlation coefficient, be-
tween pairs of elements is defined. Similarity measures can
be written in a n�n similarity matrix. The hierarchical clus-
tering methods allow us to hierarchically organize the ele-
ments in clusters. A result of the procedure is a rooted tree or
dendrogram giving a quantitative description of the clusters
thus obtained. Another result of the procedure is a filtered
correlation matrix. Indeed the whole information about the
rooted tree can be stored in a n�n matrix C� �10�. We have
recently shown �20� that, when the entries of C� are non-
negative numbers, this matrix is the correlation matrix of a
suitable factor model that we have named hierarchically
nested factor model �HNFM�. This result ensures that, under
the condition of non-negative entries of C� �typically satis-
fied in many empirical applications�, this matrix is a true
correlation matrix, i.e., it is positive definite.

A large number of hierarchical clustering procedures can
be found in the literature. For a review about the classical
techniques see, for instance, Ref. �10�. In this paper we focus
our attention on the SLCA and the ALCA.

The starting point of both the procedures is the empirical
correlation matrix C. The following procedure performs the
ALCA giving as an output a rooted tree and a filtered corre-
lation matrix CALCA

� of elements cij
�:

�1� Set B=C.
�2� Select the maximum correlation bhk in the correlation

matrix B. Note that after the first step of construction h and
k can be simple elements �i.e., clusters of one element each�
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or clusters �sets of elements�. For any i�h and for any j�k
one sets the elements cij

� of the matrix CALCA
� as cij

�=cji
�

=bhk.
�3� Merge cluster h and cluster k into a single cluster, say

q. The merging operation identifies a node in the rooted tree
connecting clusters h and k at the correlation bhk.

�4� Redefine the matrix B,

bqj =
nhbhj + nkbkj

nh + nk
if j � h and j � k ,

bij = bij otherwise,

where nh and nk are the number of elements belonging, re-
spectively, to the cluster h and to the cluster k before the
merging operation. Note that if the dimension of B is m
�m then the dimension of the redefined B is
�m−1�� �m−1� because of the merging of clusters h and k
into the cluster q.

�5� If the dimension of B is larger than 1 then go to step
�2�; otherwise, stop.

By replacing point �4� of the above algorithm with
�4� Redefine the matrix B,

bqj = max�bhj,bkj� if j � h and j � k ,

bij = bij otherwise,

one obtains an algorithm performing the SLCA and the as-
sociated filtered correlation matrix CSLCA

� . In the following,
we indicate the matrices CSLCA

� and CALCA
� with CSLCA and

CALCA, respectively, in order to simplify the notation.

IV. COMPARISON OF FILTERING PROCEDURES

We have applied the four filtering procedures described in
the preceding section to both real and artificial systems. We
have considered the real system of daily returns of the 100
most capitalized stocks traded at the New York Stock Ex-
change �NYSE� in the time period from January 2001 to
December 2003. In this case, the length of the n=100 time
series is T=748 records. We have also considered the system
of daily returns of 92 highly capitalized stocks traded at the
London Stock Exchange �LSE� in 2002. The length of the
n=92 time series is T=250 for this system. We have also
applied the filtering procedures to two artificial systems of
n=100 elements each. Both of these systems are described
by a factor model �9�. A factor model is a mathematical

model which describes the correlation among a set of ele-
ments that we indicate with xi �i=1, . . . ,n�, in terms of a
certain number of common factors fk �k=1, . . . , P�. The lin-
ear dependence of elements from factors is mathematically
expressed as

xi�t� = �
k=1

P

�ikfk�t� + i�i�t� , �13�

where i� �1, . . . ,n�, i= �1−�k=1
P �ik

2 �1/2. The kth factor fk�t�
and �i�t� are independent identically distributed random vari-
ables with zero mean and unit variance. In our simulations,
the factors fk�t� �k=1, . . . , P� and the idiosyncratic noises
�i�t� �i=1, . . . ,n� are Gaussian random variables.

In the first artificial system that we consider here, ele-
ments are grouped in P=12 orthogonal clusters. In terms of
factor models, this orthogonal grouping of elements is ex-
pressed by the fact that elements belonging to different clus-
ters depend on different �independent� factors, i.e., if xi be-
longs to the group k then xi�t�=�ikfk�t�+i�i�t�. The
dimension of groups is heterogeneous to mimic typical con-
ditions observed in some real systems. Specifically the num-
ber of elements belonging to each group ranges from a mini-
mum of 3 elements to a maximum of 17. The other artificial
system that we have considered is described by a HNFM
with P=23 factors. This empirically based model has been
introduced in Ref. �20�. We have chosen these two models
because they are conceptually very different. In fact, the
HNFM elements cannot be straightforwardly divided in
groups because they depend on factors in a nested hierarchi-
cal way, whereas in the other model the groups of elements
are clearly distinguished because elements belonging to dif-
ferent groups depend on different and mutually independent
factors. Roughly speaking we can say that the block diagonal
model describes a “separable” system, whereas the HNFM
represents a “nested” system. In a first analysis, both the
considered factor models are degenerate models, i.e., the co-
efficient �ik, which expresses the dependence of the element
i on the factor k in the model of Eq. �13�, is only depending
on the factor and not on the element. It should be noticed that
by applying either the ALCA or the SLCA to the correlation
matrix of the two considered models one obtains back the
correlation matrix of the models. This fact is due to the de-
generacy of the models and it gives a certain advantage to
hierarchical clustering procedures with respect to spectral
techniques in reconstructing the true correlation matrix of
these systems. In fact, both of the considered spectral tech-

TABLE I. Average value of the Kullback-Leibler distance between the correlation matrix of the model
and the correlation matrix filtered from the sample. For each case, average and standard deviations are
obtained from 1000 realizations or bootstrap replicas of the system �n=100, T=748�.

Models �K�� ,Ci
ALCA�� �K�� ,Ci

SLCA�� �K�� ,Ci
B�� �K�� ,Ci

S��

Block diagonal 0.15±0.01 0.57±0.04 0.84±0.03 1.50±0.05

HNFM 0.22±0.02 0.33±0.05 1.99±0.07 2.15±0.08

Block diagonal �n.d.� 3.56±0.02 4.36±0.07 3.74±0.06 4.34±0.09

HNFM �n.d.� 3.38±0.02 3.85±0.08 4.54±0.08 5.0±0.1
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niques cannot reconstruct the true correlation matrix � of the
system when applied to � itself. This is the first reason why
we have decided to perform other simulations of the systems
by removing the degeneracy from models. The second rea-
son is that the true correlation matrix of the system is in
general unknown for real data: We have only one correlation
matrix obtained from a single realization of the system with
finite time series length T. Accordingly, we have decided to
perform one single realization, say XTd

, with length Td of the
data series for each model and we have assumed that the
correlation matrix CTd

of this single realization of each
model represents the true correlation matrix of the corre-
sponding system. This approach removes the degeneracy of
the � parameters of the models and at the same time allows
to treat models in a way more similar to the one used for real
data. In order to test the stability of the filtering procedures
with respect to statistical uncertainty �as discussed in Sec.
IV B�, we have constructed bootstrap replicas of the single
realization XTd

of each model. The bootstrap approach has
the advantage that it does not require to make assumptions
about the data distribution.1

We have simulated 1000 independent sets of data for the
artificial systems described by the degenerate models and we
have constructed 1000 bootstrap replicas �22,23� of the em-
pirical data. We have also considered 1000 bootstrap replicas
of the single realization with series length Td of both the
artificial systems, in order to treat the models more similarly
to real data. We have applied all the filtering procedures de-
scribed above to the correlation matrix Ci of each simulation
or replica i of the artificial systems and to each replica i of
the real systems. Therefore, we have obtained four filtered
correlation matrices that we indicate with Ci

filt associated
with each realization or replica i of the systems. The label
“filt” in Ci

filt stands for ALCA, SLCA, B, and S depending on
the filtering procedure.

The remaining part of this section is divided into three
sections. In Sec. IV A, we investigate the ability of filtering
procedures in reconstructing the correlation matrix of mod-
els. The filtered correlation matrices are obtained by apply-
ing the procedures described in Sec. III to realizations of the
models. The quantity that we use in order to measure this
ability of filtering procedures is K�� ,Ci

filt�, where � is the
correlation matrix of the model and Ci

filt is the correlation
matrix filtered from the sample correlation matrix Ci accord-
ing to the filtering technique “filt.” The meaning of this
quantity can be explained by considering that the true prob-
ability density function of the system is P�� ,X� and by using

P�Ci
filt ,X� as an estimate of the probability density function.

In this way, K�� ,Ci
filt� measures the error one commits in

describing the system with the estimate P�Ci
filt ,X� of the

probability density function where the error is averaged in
terms of the true distribution P�� ,X� of the system. The
above argument also clarifies why we use K�� ,Ci

filt� instead
of K�Ci

filt ,��.
In Sec. IV B, we investigate the ability of filtering proce-

dures in extracting the information stored in the sample cor-
relation matrix and their stability with respect to the statisti-
cal uncertainty. Also in Sec. IV B, we apply the filtering
procedures to simulations of the models. We consider the
quantity K�Ci ,Ci

filt� which measures the information present
in the sample correlation matrix Ci that has been discarded
by the filtering procedure and is therefore absent in Ci

filt. This
lack of information is averaged in terms of P�Ci ,X�. This
argument explains why we consider K�Ci ,Ci

filt� instead of
K�Ci

filt ,Ci� for our purpose.
Finally in Sec. IV C, we repeat the comparison of filtering

procedures discussed in Sec. IV B for real data of stock re-
turns. The investigation performed in Sec. IV A cannot be
done for real data because the true correlation matrix of the
system is unknown in this case.

A. Information about the model

The first question we want to ask is which filtering pro-
cedure performs better in detecting the correlation matrix of
the model. We can ask this question only for the simulations
where we know the model correlation matrix used to gener-
ate the data. In order to evaluate the ability of filtering pro-
cedures in reconstructing the correlation matrix of the model
�, we have evaluated the average Kullback-Leibler distance
�K�� ,Ci

filt�� between the correlation matrix of the model and
the correlation matrix filtered from the samples. Averages
have been performed over 1000 realizations of the models.
The smaller �K�� ,Ci

filt��, the larger is the amount of infor-
mation about the model that is detected by the filtered ma-
trix. In Tables I and II we distinguish between degenerate
models that we indicate with “block diagonal” and “HNFM”
and nondegenerate models that we indicate with “block di-
agonal �n.d.�” and “HNFM �n.d.�.” In Table I we report re-
sults obtained for all the considered models when the length
of simulated normally distributed time series is T=748. In
Table I, we observe that the ALCA outperforms all the other
filtering procedures both for degenerate and nondegenerate
models. It should also be noticed that the performance of
SLCA is better than both the spectral filtering procedures for
all the models with the exception of the nondegenerate block
diagonal model. Such a good performance of hierarchical
clustering filtering procedures was expected for the degener-
ate models. Indeed, as we have discussed above, such mod-
els give a certain advantage to hierarchical clustering filter-
ing procedures because of the degeneracy of coefficients.
The fact that ALCA outperforms all the other filtering pro-
cedures also in the case of nondegenerate models can be
explained by taking into account both the length of data se-
ries and the way in which model degeneracy has been re-
moved. The correlation matrix of the nondegenerate models

1We have also used the Cholesky decomposition of CTd
instead of

the bootstrap approach, in order to obtain different realizations of
the nondegenerate systems. The Cholesky decomposition approach
�21� allows to construct mutually independent realizations of the
system. However, results obtained with the Cholesky decomposi-
tion are in complete agreement with results obtained by using the
bootstrap technique that we report in the paper. It is also to notice
that by using the Cholesky decomposition to perform simulations it
is necessary to know the data distribution �e.g., Gaussian or student-
t�, whereas the bootstrap approach does not require to make as-
sumptions about such distribution.
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is by construction the correlation matrix of a single realiza-
tion of the corresponding degenerate models with series
length Td=748. This fact implies that the dispersion of the
nondegenerate correlations from the corresponding values in
the degenerate model is of the order of Dm=1/Td
=1/748. In Table I, the length of simulated data series is
also T=748, i.e., T=Td. This fact implies that the statistical
uncertainty associated with the sample correlations is of the
order 1 /T=1/748. This value is equal to Dm, implying
that for series length T=748 the nondegeneracy of the model
parameters is of the same order of the statistical uncertainty.
In other words, details about specific correlation values can-
not be distinguished from statistical uncertainty for such
short data series. Only the global structure of the correlation
matrix is important and hierarchical clustering procedures
result to be more capable than spectral techniques in recon-
structing the correlation structure of the models. In order to
better understand the effect of the nondegeneracy of model
parameters on the ability of filtering procedures in recon-
structing the model, we consider also a case with time series
of length longer than in the previous case. Specifically, in
Table II we report results obtained for time series of length
T=7480, which is 10 times the length considered in Table I.
In the case of T=7480, we continue to observe a better per-
formance of hierarchical clustering filtering procedures and
in particular of ALCA with respect to spectral techniques for
the degenerate models. This fact was expected because of the
degeneracy of the models. However, in Table II we observe
that the spectral technique producing CB as result of the fil-
tering outperforms hierarchical clustering procedures for the
nondegenerate models. The method producing CS provides a
result which is of the same order as CALCA for the block
diagonal �n.d.� model whereas it still underperforms with
respect to both hierarchical clustering procedures for the
HNFM �n.d.� model. The success of CB can be explained by
the fact that for T=7480 the statistical uncertainty of sample
correlations is of the order 1 /T=1/7480 which is smaller
than Dm. Therefore, for T=7480 the nondegeneracy of mod-
els becomes relevant as compared with the statistical uncer-
tainty affecting sample correlations, and spectral techniques
result to be more capable than hierarchical clustering in tak-
ing into account such nondegeneracy. This aspect is related
to the fact that ALCA and SLCA are filtering procedures
characterized by n−1 free parameters, whereas spectral
methods have a variable number of free parameters and this
number scales as n2 when T tends to infinity.

In summary, we have shown that hierarchical clustering
procedures better reconstruct the degenerate models both for
short and long time series, whereas for the nondegenerate
models the length of data series becomes relevant in the

comparison. Specifically, for short time series �T=748�, such
that the statistical uncertainty of correlations hides the het-
erogeneity of model parameters, we have observed that hier-
archical clustering procedures, and in particular the ALCA,
outperform spectral techniques. On the contrary, for data se-
ries long enough �T=7480� that the heterogeneity of model
parameters is relevant with respect to the statistical uncer-
tainty of sample correlations, spectral procedures result typi-
cally to be more efficient than hierarchical clustering proce-
dures in reconstructing the correlation matrix of models.

B. Information about the sample correlation matrix
and stability

In this section we quantify the amount of information that
different filtering procedures preserve when applied to
sample correlation matrices. This is important in all of those
real cases when one does not know the model correlation
matrix. Moreover, we investigate the stability of the filtered
correlation matrices with respect to different realizations of
the process. We use two quantities in order to evaluate the
performance of the filtering procedures. The first quantity
that we have measured is the Kullback-Leibler distance
K�Ci ,Ci

filt� between the correlation matrix Ci of the ith
sample and the filtered correlation matrix Ci

filt obtained by
applying one of the filtering procedures to Ci. K�Ci ,Ci

filt� is a
measure of the information about Ci that is stored in Ci

filt:
The smaller K�Ci ,Ci

filt�, the larger is the amount of informa-
tion about Ci which is retained in the filtered matrix. The
second quantity that we have considered is the Kullback-
Leibler distance K�Ci

filt ,C j
filt� between two filtered matrices

Ci
filt and C j

filt obtained by applying the same filtering proce-
dure to two different simulations �or replicas� i and j of the
system. K�Ci

filt ,C j
filt� measures the statistical robustness of

filtered matrices. The smaller K�Ci
filt ,C j

filt�, the greater is the
stability of the filtering procedure with respect to the statis-
tical uncertainty. In our estimations, we have averaged both
K�Ci ,Ci

filt� and K�Ci
filt ,C j

filt� over the 1000 independent real-
izations or replicas of each system.

In Fig. 1, we show the results obtained for the block di-
agonal model with degenerate coefficients. In the figure we
plot �K�Ci ,Ci

filt�� versus �K�Ci
filt ,C j

filt�� for all the described
filtering procedures. Averages that we indicate with the no-
tation �·� are performed over 1000 realizations and the series
length is T=748. Error bars are one standard deviation. In all
the cases presented in this paper we have verified that the
error interval indicated around the mean value of plus and
minus one standard deviation includes approximately the
67% of the realizations used to compute the mean value. In

TABLE II. The same as in Table I but with T=7480.

Models �K�� ,Ci
ALCA�� �K�� ,Ci

SLCA�� �K�� ,Ci
B�� �K�� ,Ci

S��

Block diagonal 0.015±0.001 0.105±0.006 0.162±0.006 0.70±0.01

HNFM 0.023±0.002 0.032±0.005 0.986±0.007 1.44±0.07

Block diagonal �n.d.� 3.418±0.004 3.94±0.02 2.95±0.02 3.41±0.02

HNFM �n.d.� 3.174±0.008 3.52±0.02 2.54±0.04 4.66±0.09
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Fig. 1 we also report the result of a hypothetic perfect filter-
ing procedure, i.e., a filtering technique which is able to re-
cover exactly the model from each realization. In the figure,
we indicate the corresponding correlation matrix with �.
Such a filtering is maximally stable, because it recovers al-
ways the correlation matrix of the block diagonal factor
model. Accordingly, it is �K�� ,���=0. This perfect filtering
procedure removes completely the noise due to the finite
length of the data series and, therefore, the quantity
�K�Ci ,����0. Instead, it is equal to the expectation value of
Eq. �6�, i.e., �K�Ci ,����3.54 for n=100 and T=748. Note
that we know the position in the plane of the optimal filtering
even if we do not know the underlying model. This is due to
the important characteristic that the mean value of the
Kullback-Leibler distance is independent from the model
correlation matrix �at least in the multivariate Gaussian
case�. In Fig. 1, we observe that all the filtering procedures,
except the SLCA, retain in average more information about
the sample correlation matrix than the true model, i.e.,
�K�Ci ,Ci

filt���3.54 for Cfilt equal to CALCA, CB, and CS.
This fact indicates that these filtering procedures do not dis-
card completely the noise present in the sample correlation
matrix as a consequence of the finite length of time series.
The SLCA algorithm is the only one which is retaining less
information about the sample correlation matrix than the true
model. Moreover the SLCA is more stable than all the other
filtering procedures.

In Fig. 2, we show the results obtained by applying the
considered filtering procedures to the system described by

the HNFM with P=23 factors and with degenerate coeffi-
cients. In this case, only the ALCA is retaining more infor-
mation about the sample correlation matrix than the true
model. However, it is interesting to note that both the spec-
tral techniques are at the same time less informative about
the sample correlation matrix and less stable than both hier-
archical clustering filtering procedures. In other words, for
the degenerate HNFM, hierarchical clustering procedures
clearly outperform spectral techniques. This fact is a conse-
quence of the pure hierarchical nature of the HNFM. Indeed
in Ref. �20�, we have shown that when the hierarchical fea-
tures of a system are prominent with respect to the details of
specific correlation values, the spectral procedures have
problems in filtering information about the system. Such
problems do not appear for separable systems, like the block
diagonal model considered above.

In summary, for both the considered models we observe
that hierarchical clustering techniques produce more stable
filtered correlation matrices than spectral procedures. Con-
cerning the information about the sample correlation matrix
that is stored in the filtering we observe that results obtained
for hierarchical clustering procedures are closer to the perfect
filtering �giving as output the true model of the system� than
spectral techniques. Finally, it should be noticed that the
SLCA is the most stable within the considered filtering pro-
cedures. Such an excellent performance of hierarchical clus-
tering techniques can be due to the degenerate nature of
models as discussed in the first part of this section.

In fact when we remove the degeneracy of coefficients
from the models we observe a different behavior of filtering
procedures. In Fig. 3 we plot �K�Ci ,Ci

filt�� versus
�K�Ci

filt ,C j
filt�� for the artificial system obtained from a single

realization XTd
with time series length Td=748 of the factor

FIG. 1. �Color online� Block diagonal model with degenerate
coefficients. Comparison of the four filtered correlation matrices
described in the text. In the graph we plot the stability of the filtered
matrix �x axis� against the amount of information about the corre-
lation matrix that is retained in the filtered matrix �y axis�. Small
values of �K�Ci

filt ,C j
filt�� and �K�Ci ,Ci

filt�� correspond to large sta-
bility and large amount of information preserved by the filtering,
respectively. The analysis is performed for a system of 100 ele-
ments divided in 12 orthogonal groups, each one depending on a
specific Gaussian factor, i.e., a block diagonal model. Averages
have been performed over 1000 independent realizations of the sys-
tem and error bars correspond to one standard deviation. Error bars
are not shown when they are smaller than the symbol size.

FIG. 2. �Color online� Hierarchically nested factor model with
degenerate coefficients. Comparison of the filtered correlation ma-
trices produced by the four techniques described in the text. The
analyzed system is composed by 100 elements following the
HNFM with 23 factors obtained in Ref. �20�. Averages have been
performed over 1000 independent realizations of the system and
error bars correspond to one standard deviation. Error bars are not
shown when they are smaller than the symbol size.
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model with 12 orthogonal factors. This is equivalent to con-
sidering a block model with nondegenerate coefficients. In
Fig. 4, we plot results obtained for the single realization with
length Td=748 of time series of the HNFM with 23 factors.
Also in this case our investigation is equivalent to consider-
ing a HNFM with nondegenerate coefficients. Mean values

and error bars in the figures correspond to the average and
the standard deviation, respectively, both estimated over
1000 bootstrap replicas of the single realization of the mod-
els. From Figs. 3 and 4 we note that

�K�Ci,Ci
B�� � �K�Ci,Ci

S�� � �K�Ci,Ci
ALCA��

� �K�Ci,Ci
SLCA�� .

In both the figures, we observe that all of the filtering proce-
dures are less informative about the sample correlation ma-
trix than the true correlation matrix �=CTd

of both the mod-
els, i.e., E�K�C ,����3.54 is smaller than any �K�Ci ,Ci

filt��
reported in the figures.

Concerning the stability of the filtered matrices, from the
figures we observe that the SLCA filtered matrix outperforms
all of the other techniques, although the filtered matrix given
by ALCA has a stability of the same order of magnitude of
the SLCA matrix. A good filtered correlation matrix should
be at least more stable than the sample correlation matrix
with respect to the statistical uncertainty. This sentence can
be translated into the following inequality:

�K�Ci
filt,C j

filt�� � �K�Ci,C j�� . �14�

For Gaussian variables we know the expected value of
K�Ci ,C j� from Eq. �7� and thus, for n=100 and T=748, the
last inequality becomes

�K�Ci
filt,C j

filt�� �
1

2

n�n + 1�
T − n − 1

� 7.81. �15�

This condition is satisfied by all the considered filtered ma-
trices. However, we stress the fact that the matrices obtained
from hierarchical clustering techniques and in particular the
one obtained by SLCA have a value of �K�Ci

filt ,C j
filt�� of an

order of magnitude smaller than the one expected for the
Pearson estimator of correlations.

In summary, our investigation of considered models
shows that spectral filtering techniques are slightly more in-
formative about the sample correlation matrix than hierarchi-
cal clustering filtering techniques when details about specific
correlation values are relevant, such as in the case of nonde-
generate models. On the contrary, from the point of view of
stability of filtered matrices, hierarchical clustering proce-
dures, and in particular the SLCA, outperform spectral tech-
niques.

C. Empirical data

In this section, we compare the filtering procedures when
applied to real data. We have considered the system of daily
returns of the 100 most capitalized stocks traded at the
NYSE in the time period from January 2001 to December
2003. In this case, the length of the n=100 time series is T
=748 records. We have also considered the system of daily
returns of 92 highly capitalized stocks traded at the London
Stock Exchange in 2002. For this system the record length of
the n=92 time series is T=250.

In Fig. 5, we report the results obtained by applying all
the considered filtering procedures to the system of n=100

FIG. 3. �Color online� Block diagonal model with nondegener-
ate coefficients. Comparison of the four filtered correlation matrices
described in the text. The analysis is performed for a system of 100
elements divided in 12 orthogonal groups, each one depending on a
specific Gaussian factor, i.e., a block diagonal model. Averages
have been performed over 1000 bootstrap replicas of a single real-
ization of the system and error bars correspond to one standard
deviation. Error bars are not shown when they are smaller than the
symbol size.

FIG. 4. �Color online� Hierarchically nested factor model with
nondegenerate coefficients. Comparison of the filtered correlation
matrices produced by the four techniques described in the text. The
analyzed system is composed by 100 elements following the
HNFM with 23 factors obtained in Ref. �20�. Averages have been
performed over 1000 bootstrap replicas of a single realization of the
system and error bars correspond to one standard deviation. Error
bars are not shown when they are smaller than the symbol size.
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stocks traded at the NYSE, while in Fig. 6 we show the
results obtained for the system of n=92 stocks traded at the
LSE. In both the figures, we observe that hierarchical clus-
tering procedures are more stable than spectral techniques,
whereas the latter are more informative about the sample
correlation matrix than hierarchical clustering. These facts
are in agreement with results obtained for simulations in the
case of nondegenerate models. However this agreement is
only qualitative. Indeed, both the values of �K�Ci ,Ci

filt�� and
�K�Ci

filt ,C j
filt�� observed for the real systems are larger than

the corresponding values obtained in the case of simulations.

This fact can be due to two effects. The first one is related to
the fact that the real systems can be characterized by a struc-
ture of correlations more complex than the one considered in
the models. For example, the role of the complexity of cor-
relation structures onto the performance of filtering proce-
dures was observed in the simulations of the degenerate
models of Sec. IV A for the spectral techniques. Indeed the
performance of such procedures was rather unsatisfactory for
the HNFM with respect to the block diagonal model. The
second effect that can be responsible for the quantitative dif-
ference between results obtained for simulations and results
obtained for real data can be related to the fact that we have
considered Gaussian variables in the simulations, whereas
the distribution of returns is fat tailed �24�.

Some quantitative differences are also evident in the com-
parison of the two real systems. Specifically, both the values
of �K�Ci ,Ci

filt�� and �K�Ci
filt ,C j

filt�� are larger in the LSE data
with respect to the NYSE data. This difference is mainly due
to the different lengths of data series, i.e., T=748 at NYSE
and T=250 at LSE. The smaller T, the larger is the statistical
uncertainty of the sample correlation matrix. For instance,
we can make quantitative this difference by using the expec-
tation values of the Kullback-Leibler distance of Eqs. �6� and
�7�. For a system of n=100 elements with data series of
length T=748 we have E�K�C1 ,����3.54 and
E�K�C1 ,C2���7.81, whereas for a system of n=92 elements
and series length T=250 we have E�K�C1 ,����9.86 and
E�K�C1 ,C2���27.2. A comparison of the results obtained
for Gaussian random models in Sec. IV B with the results
obtained for the real systems investigated in this section
shows that the Kullback-Leibler distance provides results on
real data about the relative effectiveness of the considered
filtering procedures which are in agreement with those ob-
served for models.

V. CONCLUSIONS

In conclusion we have shown that the Kullback-Leibler
distance can be fruitfully used to compare correlation matri-
ces of multivariate data. We have shown that this distance is
more appropriate to achieve this objective than the standard
Frobenius distance. This fact is due to some properties of the
Kullback-Leibler distance such as the asymmetry, the model
independence of expectation values, and its relation with the
maximum likelihood factor analysis. Sample correlation ma-
trices can be compared in pairs among them and/or with
respect to model matrices or to filtered matrices. We have
used the Kullback-Leibler distance to compare four different
techniques used to obtain a filtered correlation matrix from
the empirical one. Two of the four techniques that we have
analyzed are spectral filtering procedures based on random
matrix theory whereas the other two techniques are based on
hierarchical clustering methods, specifically ALCA and
SLCA. Results obtained for simulations are consistent with
those obtained for real data. These results can be summarized
as follows: both the considered spectral techniques are
slightly more informative about the sample correlation ma-
trix than the other two techniques based on hierarchical clus-
tering. On the other hand, both the techniques based on hi-

FIG. 5. Correlation matrix of a real system composed of 100
stocks traded at NYSE during the period from January 2001 to
December 2003. The variable investigated is the daily return of the
most capitalized stocks. The length of time series is T=748 for this
system. Averages have been performed over 1000 bootstrap replicas
of data series and error bars correspond to one standard deviation.

FIG. 6. Correlation matrix of a real system composed of 92
stocks traded at LSE during the period from January to December
2002. The variable investigated is the daily return of the most capi-
talized stocks. The length of time series is T=250 for this system.
Averages have been performed over 1000 bootstrap replicas of data
series and error bars correspond to one standard deviation.
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erarchical clustering are producing filtered correlation
matrices which are more stable than those obtained with
spectral procedures. These results show that the Kullback-
Leibler distance is very useful in characterizing multivariate
systems described by real data, factor models, and matrices
filtered from the sample one.

In conclusion, the Kullback-Leibler distance is a powerful
and accurate tool able to characterize the information and
stability of sample, model, and filtered correlation matrices,
and it is a useful quantitative indicator for the relative
amount of information and the relative stability of correla-
tion matrices of multivariate data.
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APPENDIX A

In this appendix, we show how to derive Eq. �3� from Eq.
�2�. Let us consider the multivariate Gaussian distributions
P��1 ,X� and P��2 ,X� describing the same random vector X.
We have

P��i,X� =
1

�2��n
�i

exp�− 1

2XT�i
−1X� . �A1�

By substituting Eq. �A1� into Eq. �2� we get

K�P��1,X�,P��2,X�� =
1

2
ln� 
�2



�1
�
+

1

2�2��n
�1

�I1,2 − I1,1� ,

�A2�

where

Ii,j =	 e−�1/2�XT�i
−1X�XT� j

−1X�dX . �A3�

The integral Ii,j can be solved by using the linear trans-
formation Y =G jX, where G j is the orthogonal matrix which
diagonalizes � j. It results in the following:

Ii,j = �2��n
�i
�
q=1

n

hqqbqq, �A4�

where hqq �q=1, . . . ,n� are the elements of the diagonal ma-
trix G j

T� j
−1G j, whereas bqq �q=1, . . . ,n� are the diagonal el-

ements of the matrix G j
T�iG j. We can further simplify the

expression of Ii,j by taking into account the fact that the

matrix G j
T� j

−1G j is diagonal. Indeed �q=1
n hqqbqq

=tr�G j
T� j

−1G jG j
T�iG j�=tr�� j

−1�i� due to the orthogonality of
G j and to the invariance of the trace with respect to rotations.
Accordingly, we obtain that

Ii,j = �2��n
�i
 tr�� j
−1�i� . �A5�

Finally, we obtain the expression of
K�P��1 ,X� , P��2 ,X�� given in Eq. �3� by substituting the
last expression of Ii,j into Eq. �A2� and noting that
tr��i

−1�i�=n.

APPENDIX B

In this appendix, we derive the expectation values of the
Kullback-Leibler distance given in Eqs. �5�–�7�. We shall use
two known results from the theory of Wishart matrices. Let
us consider a multinormally distributed random vector X of
dimension n with correlation matrix �. Let C1 and C2 be two
sample correlation matrices obtained from two independent
realizations of the system, X1 and X2, respectively, both of
length T. The first result from the theory of Wishart matrices
that we shall use hereafter is that ln
Ci
, i=1,2 is equal to
ln
�
−n ln�T� plus the sum of the logarithms of n mutually
independent �-squared random variables yT−n+1 , . . . ,yT with
degrees of freedom T−n+1, . . . ,T−1,T, respectively �see,
for instance, Ref. �9��. This fact implies that the expectation
value of ln
Ci
 is

E�ln
Ci
� = ln
�
 − n ln�T� + �
p=T−n+1

T

E�ln�yp�� . �B1�

Because E�ln�yp��=���p /2� /��p /2�+ln�2� �see, for in-
stance, Ref. �25�� we obtain that

E�ln
Ci
� = ln
�
 + n ln�2/T� + �
p=T−n+1

T
���p/2�
��p/2�

. �B2�

The other result from the theory of Wishart matrices that
we use here is that the expectation value of the inverse of Ci
is E�Ci

−1�=T�−1 / �T−n−1� �see, for instance, Ref. �9��. Ac-
cordingly, we obtain

E�tr�Ci
−1��� = E�tr�Ci

−1C j�� =
nT

T − n − 1
, �B3�

where we have used the linearity of the trace operator. Fi-
nally, we have

E�tr��−1C j�� = tr��−1�� = n , �B4�

where we have again used the linearity of the trace and the
fact that E�Ci�=�. By using Eqs. �B2� and �B3� it is now
straightforward to obtain both the expression of E�K�� ,C1��
as given in Eq. �5� and the expectation value E�K�C1 ,C2�� as
given in Eq. �7�. Finally, by using results of Eqs. �B2� and
�B4� we obtain the expectation value of K�C1 ,�� as given in
Eq. �6�.
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